Dispersion and Deposition Modeling An Overview

Randy Robinson
Region 5
July 15, 2003

Presentation Outline

- Dispersion modeling contribution to RA
- Types of dispersion modeling tools
- Important questions to ask
- Deposition modeling
- Recent improvements in tools
- Uncertainties/caveats

Why use modeling in a risk assessment?

- Allows for source culpability
- Evaluate "what ifs"
- Estimate future air quality
- Provides more spatial information than monitoring alone

Basic types of models

Eulerian

Lagrangian

Observer "watches the plume go by"

Observer "follows along with the plume"

www.robertbeatty.com

Eulerian Model

Grid models (CMAQ, CAMX, etc.)

- Chemistry
- Emissions pass through a volume of air

irina.colorado.edu/ lectures/Lec29.htm

Lagrangian Models

- Example is the gaussian plume model, e.g., ISCST3
- Local scale impacts
- Non-reactive pollutants

Standard examples of Lagrangian models for RA use

- SCREEN3 simple, easy, conservative screening level model
- ISCST3 Refined gaussian plume model, commonly used
- CALPUFF puff model used for complex winds and long range transport
- AERMOD Proposed to replace ISCST3

Which model should I select?

- Are the pollutants of interest primary or secondary? Are they reactive?
- Are the gases heavier than air (i.e., dense)?
- How large is the area of interest? How far away will we be predicting concentrations?
- Are there significant terrain features (i.e., mountains, hills, valleys)?

Which model should I select? cont.

- Are there nearby buildings that can affect the plume?
- Is there important complex meteorology (i.e., stagnation, valley upslope/downslope flows, channeling)?
- Are multiple pathway exposures a concern (i.e., soil ingestion, fish consumption, etc.)?

Deposition Modeling

For multiple
 pathway
 assessments need to estimate
 deposition flux
 values (g/m2/time)

www.cnn.com/2000/ASIANOW/east/09/01/japan.volcano.02/

ISCST3 Deposition

- Requires additional input information
- Meteorological processing
 - Monin-Obukov Length, surface
 roughness length, albedo, Bowen ratio,
 anthropogenic heat flux, and net absorbed
 radiation

ISCST3 Deposition cont.

- Source Inputs
 - Particle and gaseous deposition (wet and dry)
 - Particle size categories
 - Mass fraction in each size category
 - Particle density

ISCST3 Deposition cont.

- Source Inputs
 - Gaseous dry deposition
 - provide vegetation state
 - molecular diffusivity
 - Solubility enhancement factor
 - Pollutant reactivity parameter
 - Mesophyll resistance term
 - Henry's Law coefficient

Deposition Modeling Improvements

- New deposition algorithms for dry and wet, particles and gases
- For dry gases, old approach is maintained but involves updated techniques
- For dry particles, 2 methods
 - Method 1 if 10% of particles > 10 um diameter
 - Method 2 if less than 10% > 10 um diameter

Deposition Modeling Improvements (cont.)

- New approaches for wet deposition of gas and particles
- Model output: concentration, dry dep., wet dep., total dep., conc w/ dep.
- Depletion automatically included
- Will be available in ISCST3 and AERMOD possibly within a month

AERMOD!!!!

- Proposed by EPA to replace ISC for regulatory purposes (4/2000)
- AERMOD performs better than ISCST3 in comparisons with observed data
- Includes updated science and improved techniques to characterize the boundary layer and dispersion
- Possibly finalized by this fall

Uncertainties in Modeling

- Model results represent an ensemble average characterization of an event
- Uncertainties (reducible and non-reducible) are inherent in any model. Must live with and try to minimize
- Important to document the uncertainties, and their potential impacts

General Model Accuracy

- Studies have shown that for dispersion models:
 - A factor of two (+ or –) estimate to observed ratio for ambient air concentrations is considered reasonable
 - Better at longer time-averaged concentrations than for short-term at specific locations
 - Reasonably reliable in estimating the peak concentration occurring sometime, somewhere, within an area. Not as reliable when concentrations are correlated with observed values at a specific time and place

Points to Remember

- Dispersion modeling plays a key role in risk assessment
- Important to select a model that can address your questions/issues
- Deposition flux values needed for multi-pathway assessments. Requires additional input information
- New deposition algorithms available soon
- AERMOD soon to replace ISCST3